Mechanics of nanowire/nanotube in-surface buckling on elastomeric substrates.

نویسندگان

  • J Xiao
  • S Y Ryu
  • Y Huang
  • K-C Hwang
  • U Paik
  • J A Rogers
چکیده

A continuum mechanics theory is established for the in-surface buckling of one-dimensional nanomaterials on compliant substrates, such as silicon nanowires on elastomeric substrates observed in experiments. Simple analytical expressions are obtained for the buckling wavelength, amplitude and critical buckling strain in terms of the bending and tension stiffness of the nanomaterial and the substrate elastic properties. The analysis is applied to silicon nanowires, single-walled carbon nanotubes, multi-walled carbon nanotubes, and carbon nanotube bundles. For silicon nanowires, the measured buckling wavelength gives Young's modulus to be 140 GPa, which agrees well with the prior experimental studies. It is shown that the energy for in-surface buckling is lower than that for normal (out-of-surface) buckling, and is therefore energetically favorable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling of nanotubes under compression considering surface effects

In this paper, the modified Euler-Bernoulli beam model is presented to examine the influence of surface elasticity and residual surface tension on the critical force of axial buckling of nanotubes in the presence of rotary inertia. An explicit solution is derived for the buckling loads of microscaled Euler beams considering surface effects. The size-dependent buckling behavior of the nanotube d...

متن کامل

Buckling of nanotubes under compression considering surface effects

In this paper, the modified Euler-Bernoulli beam model is presented to examine the influence of surface elasticity and residual surface tension on the critical force of axial buckling of nanotubes in the presence of rotary inertia. An explicit solution is derived for the buckling loads of microscaled Euler beams considering surface effects. The size-dependent buckling behavior of the nanotube d...

متن کامل

Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics

Mechanical buckling usually means catastrophic failure in structural mechanics systems. However, controlled buckling of thin films on compliant substrates has been used to advantage in diverse fields such as micro-/ nanofabrication, optics, bioengineering, and metrology as well as fundamental mechanics studies. In this Feature Article, a mechanical buckling model is presented, which sprang, in ...

متن کامل

Controlled 3D buckling of silicon nanowires for stretchable electronics.

Silicon (Si) nanowire (NW) coils were fabricated on elastomeric substrates by a controlled buckling process. Si NWs were first transferred onto prestrained and ultraviolet/ozone (UVO)-treated poly(dimethylsiloxane) (PDMS) substrates and buckled upon release of the prestrain. Two buckling modes (the in-plane wavy mode and the three-dimensional coiled mode) were found; a transition between them w...

متن کامل

Surface Stress Effect on the Nonlocal Biaxial Buckling and Bending Analysis of Polymeric Piezoelectric Nanoplate Reinforced by CNT Using Eshelby-Mori-Tanaka Approach

In this article, the nonlocal biaxial buckling load and bending analysis of polymeric piezoelectric nanoplate reinforced by carbon nanotube (CNT) considering the surface stress effect is presented. This plate is subjected to electro-magneto-mechanical loadings. Eshelby-Mori-Tanaka approach is used for defining the piezoelectric nanoplate material properties. Navier’s type solution is employed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2010